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Abstract

Microwave radiometry has a long legacy of providing estimates of remotely sensed near surface

soil moisture measurements over continental and global scales. A consistent assessment of the

errors and uncertainties associated with these retrievals is important for their effective utilization

in modeling, data assimilation and end-use application environments. This article presents an eval-

uation of soil moisture retrieval products from AMSR-E, ASCAT, SMOS, AMSR2 and SMAP

instruments using information theory-based metrics. These metrics rely on time series analysis of

soil moisture retrievals for estimating the measurement error, level of randomness (entropy) and

regularity (complexity) of the data. The results of the study indicate that the measurement errors in

the remote sensing retrievals are significantly larger than that of the ground soil moisture measure-

ments. The SMAP retrievals, on the other hand, were found to have reduced errors (comparable to
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those of in-situ datasets), particularly over areas with moderate vegetation. The SMAP retrievals

also demonstrate high information content relative to other retrieval products, with higher levels

of complexity and reduced entropy. Finally, a joint evaluation of the entropy and complexity of

remotely sensed soil moisture products indicates that the information content of the AMSR-E, AS-

CAT, SMOS and AMSR2 retrievals is low, whereas SMAP retrievals show better performance. The

use of information theoretic assessments is effective in quantifying the required levels of improve-

ments needed in the remote sensing soil moisture retrievals to enhance their utility and information

content.
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1. Introduction1

Soil moisture plays an important role in modulating the exchanges of water and energy at the2

land atmosphere interface and profoundly influences the spatial and temporal variability of weather3

and climatic conditions (Koster et al. (2004); Seneviratne et al. (2010)). Accurate characterization4

of soil moisture is, therefore, important for applications such as flood/drought forecasting, weather5

and climate modeling, agricultural and water resources management. Observations of soil mois-6

ture from ground measurements tend to be sparse and are often not sufficient to capture the spatial7

heterogeneity and variability of soil moisture at larger spatial scales, required for such applications.8

Space-borne measurements of soil moisture, primarily from microwave (MW) remote sensing, pro-9

vide an alternative for developing observations of soil moisture over larger spatial extents (Jackson10

(1993); Njoku and Entekhabi (1995)). In the past several decades, near surface soil moisture re-11

trievals have become available from a number of low-frequency (C, X, Ku- and L-band) passive12

and active microwave sensors (Wagner et al. (2003); Njoku et al. (2003); Wen et al. (2003); Owe13

et al. (2008); Kerr et al. (2010); Entekhabi et al. (2010)).14

Microwave soil moisture sensors exploit the fact that the emission of the land surface is affected15

by variables such as surface temperature, roughness, vegetation and soil moisture. The influence16

of soil moisture is most prominent at low frequencies (∼10 - 1 GHz, making it the ideal range17

of satellite remote sensing (Njoku and Kong (1977); Jackson et al. (1982); Ulaby et al. (1986)).18

Unlike the visible and infrared sensors, the microwave sensors are not limited by cloud cover and19

nighttime conditions. The observations can be made at any time of the day and are not depen-20

dent on solar illumination (Jackson et al. (1996)). Longer wavelengths (L-band; 1 -2 GHz) also21
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allow for deeper penetration into the soil and reduce the influence of vegetation in attenuating the22

soil moisture signal (Jackson et al. (1982)). The active instruments can provide measurements at23

higher spatial resolutions than the passive microwave instruments, though radar systems are more24

strongly affected by the local topography, roughness and vegetation than passive radiometer sys-25

tems (Entekhabi et al. (2010); Lakshmi (2013)). However, studies such as Brocca et al. (2011)26

have suggested that ASCAT can outperform passive microwave based retrievals over areas with27

moderate vegetation. Passive observations on the other hand, are more impacted by spatial hetero-28

geneity and scaling effects because of poor spatial resolution. The spatial resolution of the passive29

microwave soil moisture observations is typically coarse (∼25 to 50 km), with the satellite foot-30

print size increasing with wavelength and altitude. The presence of snow cover, frozen soil and31

precipitation events also limits the skill of the soil moisture retrievals (Parinussa et al. (2011)).32

Due to the differences in the spatial and temporal span of different MW instruments and due33

to the limited availability of reliable ground measurements, a consistent evaluation of soil mois-34

ture remote sensing datasets is difficult. Land surface model climatology has often been used the35

reference to address the climatological differences between different retrievals when developing36

multi-sensor products (Liu et al. (2011b)) and for consistent evaluations of multiple products. In37

a recent study, Kumar et al. (2015) has shown that such approaches lead to the loss of valuable38

signals and cause the statistical properties of the retrieval products to be similar to that of the ref-39

erence datasets. Therefore, performance measures not reliant on the availability of ancillary soil40

moisture data can be useful for characterizing and assessing the quality of the soil moisture re-41

trieval datasets. As a result, studies have used indirect approaches such as triple collocation (TC;42

4



Stoffelen (1998); Dorigo et al. (2010)) and spectral fitting (SF; Su et al. (2014)) to assess the rela-43

tive quality of global soil moisture retrievals. TC comparisons involve three different soil moisture44

products (often a mix of satellite soil moisture retrievals and land surface model estimates), with45

assumptions of linearity (between the true soil moisture and observations), signal and error sta-46

tionarity, error orthogonality and independence of errors in the constituent datasets (Gruber et al.47

(2016b)). Recent studies have examined the applicability of these assumptions for soil moisture48

datasets (Yilmaz and Crow (2014)) and have proposed enhancements to address the limitations49

imposed by these assumptions, making it a powerful method for global soil moisture evaluation50

(Zwieback et al. (2013); Gruber et al. (2016b,a). The SF error estimator, based on the method de-51

veloped by Su et al. (2013) for de-noising satellite soil moisture datasets, estimates the stochastic52

random errors by comparing the spectral properties of a given soil moisture time series and a lin-53

earized water balance model. This method also does not require ancillary datasets and was shown54

to provide error estimates comparable to those from TC.55

Similar to these stand-alone assessment methods, here we present the use of information theo-56

retic and autoregressive analysis of time series data for quantifying errors and information content57

of remote sensing retrieval datasets from a number of recent soil moisture missions. Information58

theory measures, originally proposed by Shannon (1948), consider the stochasticity in time series59

data as sources of information. A key information theoretic measure is entropy, which quanti-60

fies the information content or randomness associated with the probability distribution of the data.61

Similarly, temporal measures of complexity rooted in information theory can be used to discrimi-62

nate datasets based on time series complexity. Entropy and complexity provide separate measures63
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of information by characterizing the randomness and state changes within a given time series of64

the data. Entropy is a measure of uncertainty, which is low for periodic sequences and high for65

random processes. On the other hand, complexity is a measure that is low for both periodic and66

random sequences, but high for sequences that are not easy to describe with a minimal set of pa-67

rameters (Lange (1999)). Such measures have been employed for comparing model outputs of soil68

moisture (Pachepsky et al. (2006)), space-borne soil moisture retrievals (Nearing et al. (2017)),69

runoff and precipitation measurements from different catchment systems (Lange (1999); Hauhs70

and Lange (2008)) and ecological systems (Parrott (2010)). A key advantage of information the-71

oretic methods is that they enable the quantification of hidden patterns and structures of the data72

without requiring ancillary or independent data.73

In addition to the use of information theoretic measures, we also employ time series red noise74

spectrum analysis to develop estimates of accuracy. Vinnikov et al. (1996) employed a first-order75

Markov process model framework to evaluate observational soil moisture data, which was ex-76

tended by Dirmeyer et al. (2016) in a recent study to compare measurement errors from different77

in-situ soil moisture observational networks. Here we apply this method for comparing measure-78

ment errors associated with remote sensing soil moisture retrievals. Similar to the information79

theoretic measures, a key advantage of this approach is that it does not require specific validation80

or independent reference data. The simultaneous development of information theoretic and mea-81

surement error estimates allows the comparison of associated tradeoffs in accuracy, uncertainty82

and complexity.83

The article is organized as follows: Section 2 presents the details of the datasets and the eval-84
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uation approaches. The application of the information theory methods to the remote sensing soil85

moisture retrievals is described in Section 3. Section 4 provides a summary and discussion of the86

major conclusions of this study.87

2. Approach88

2.1. Methods89

The information theoretic measures are developed by treating the time series data as a symbol90

sequence with a finite number of states. The standard approach is to categorize the time series data91

into a binary string (“symbols”) (Lange (1999); Pachepsky et al. (2006)), by encoding values above92

and below the median (for time series at each grid point), as 1 and 0, respectively. The entropy93

and complexity measures are then computed based on the probabilities of observing patterns of94

states/words (a group of L consecutive symbols) within the sequence. In this article, we use three95

symbol states (L=3), consistent with prior studies (Pachepsky et al. (2006); Pan et al. (2011)).96

These include the probability of occurrence of a given state i (pL,i) as well as the second order97

probability (pL,ij) of observing state i next to j. For binary symbol sequences, there are 2L possible98

words of length L. (For example, if an encoded symbol string starts as ’0011’, then the first word99

is ’001’, which transitions to the second word ’011’ and so on.)100

Shannon entropy is the expected value of the information contained in a symbol sequence. The101

metric entropy is specified as the normalized measure of Shannon entropy for states of size L and102
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is defined as:103

H(L) = −
∑2L

i=1 pL,ilog2pL,i
L

(1)

H(L) ranges between 0 (for constant sequences) and 1 (for uniformly distributed random se-104

quences).105

The fluctuation complexity (Bates and Shephard (1993)), which measures the spread between106

information within a symbol string between consecutive states is expressed as:107

C(L) =
2L∑
i,j

pL,ij

(
log2

pL,i
pL,j

)2

(2)

C(L) can be thought of as a measure of the ordering of states within a symbol sequence, with108

high and low values associated with complex and simple orderings, respectively. The fluctuation109

complexity, therefore, is a measure of the extent of the changes in information gain or loss in a110

time series and it approaches zero for signals with limited probable states (Pan et al. (2011)).111

Note that both the choice of the classification and the length of the words have an impact on112

the metrics that are computed. The use of a finer classifications (rather than wet and dry) and the113

use of larger number of words enables a more granular detection of the entropy and complexity114

measures, but requires longer and consistent time series. Though the use of the three-symbol states115

in this study limits the granularity of the soil moisture changes detected by the information theory116

measures, they are helpful in examining the general trends across various remote sensing datasets.117

The analysis of measurement errors used in this study is based on the fact that soil moisture,118

due to its memory, can be described as a first order Markov process (Delworth and Manabe (1988)).119

8



The lagged autocorrelation of soil moisture (r(τ)) reduces exponentially with time:120

r(τ) = e−λτ (3)

where λ is decay frequency and τ is the time lag. Due to the presence of measurement errors, a121

linear regression of ln(r) vs τ does not pass through τ = 0, r=1. Therefore, the displacement term122

a of the correlation at τ = 0 can be used to compute estimates of measurement error (Vinnikov et al.123

(1996)). The relative measurement error (ε) can be expressed as the square root of the fraction of124

the random error variance and the variance of soil moisture, as follows:125

ε =

√(
a

1 + a

)
(4)

In other words, ε is the root mean square (RMS) of the measurement error normalized by the126

standard deviation of soil moisture. This statistical model assumes that soil moisture evolution127

can be represented by a first-order ordinary differential equation (ODE) driven by white-noise128

precipitation forcing (Delworth and Manabe (1988)). Essentially the model assumes that noise129

quantified here is that which does not fit the first order ODE. In the analysis below, the error130

estimates are generated using autocorrelations at lags of 1, 2 and 3 days.131

2.2. Data132

Retrievals from five recent satellite soil moisture microwave instruments are used in this study.133

They include: (1) the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-134

E) aboard the Aqua satellite, (2) the Advanced Scatterometer (ASCAT), a C-band active microwave135

remote sensing instrument aboard the Meteorological Operational (METOP) satellites, (3) the136
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Soil Moisture Ocean Salinity (SMOS) mission, (4) the Advanced Microwave Scanning Radiome-137

ter 2 (AMSR2) onboard the Global Change Observation Mission-Water (GCOM-W) satellite, and138

(5) the Soil Moisture Active Passive (SMAP) mission. Except for AMSR-E, which stopped func-139

tioning in October 2011, all these instruments are currently providing measurements of surface140

soil moisture. Soil moisture retrievals are generated from the raw measurements using differ-141

ent retrieval algorithms and systems. The AMSR-E retrievals with the Land Parameter Retrieval142

Model (LPRM) algorithm (Owe et al., 2008) is used here as prior studies have quantified better per-143

formance of AMSR-E LPRM data relative to other available AMSR-E retrieval products (Rudiger144

et al. (2009); Champagne et al. (2010); Liu et al. (2011a)). The Soil Moisture Operational Products145

System (SMOPS; Liu et al., 2012) of NOAA/NESDIS is used for obtaining soil moisture retrievals146

from the backscatter measurements acquired by ASCAT and the L-band radiometer measurements147

of SMOS. Note that the ASCAT retrievals available through SMOPS are the same as the Near148

Real Time (NRT) retrievals from EUMETSAT, designed to meet the latency requirements of the149

operational Numerical Weather Prediction (NWP) community. The SMOS retrievals in SMOPS150

are produced through a single channel retrieval algorithm based on Jackson (1993). The SMOPS151

product is used for operational soil moisture data assimilation at several agencies around the world152

due to its NRT availability. The AMSR2 retrievals (Level 3 products) from the Japan Aerospace153

Exploration Agency (JAXA; Fujii et al., 2009; Koike, 2013) are used in this study as they have been154

shown to perform better compared to other available retrieval products (Bindlish et al. (2017)).155

The SMAP mission consists of two instruments, a L-band high resolution radar (1 km) and a156

coarse-resolution radiometer (40 km). The SMAP radar encountered an anomaly a few months157
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after launch and is currently inoperable. As a result, in this study we use the level 3, coarse158

resolution (36 km) passive microwave measurements (L3 SM P; O’Neill et al. (2012); Chan et al.159

(2016)) available through the National Snow and Ice Data Center (NSIDC). The temporal extents160

of the data sets used in this study are as follows: AMSR-E data from June 2002 to October 2011,161

ASCAT from January 2007 to December 2016, AMSR2 from July 2012 to December 2016, SMOS162

from April 2012 to December 2016 and SMAP from April 2015 to December 2016. To ensure a163

reasonable temporal continuity in these datasets, gaps of less than 3 days are filled using a 1-164

d discrete cosine transform Wang et al. (2012) method, consistent with the strategy used in Su165

et al. (2013). Unlike Dirmeyer et al. (2016), where interpolation was used to fill gaps of less than166

10 days, we used a shorter time window to ensure that the temporal interpolation itself does not167

significantly impact the computation of the metrics. As the temporal gaps and irregular sampling168

of remote sensing datasets are intrinsic to these product, we omit analyses that reconciles these169

differences to a common repeat period.170

3. Results171

Figure 1 shows the maps of relative measurement error and its distribution for soil moisture re-172

trievals from each sensor. The data quality flags provided with each sensor are employed in screen-173

ing the data values used in the comparisons. For example, a subset of data locations that conform174

to the recommended Quality Assessment (QA) classifications (’good retrievals’) of the SMOPS175

system is employed in the comparisons. The spatial patterns in Figure 1 show a strong signal of176

vegetation density with larger errors over areas with thick vegetation (e.g., Amazon, Congo, East-177

ern U.S.) and smaller errors over Savannas and Arid regions (e.g., India, Western U.S.). Compared178
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to the SMOS retrievals, the ASCAT retrievals show larger errors over arid regions of the world179

(Sahara, Western U.S., deserts of Australia). This is consistent with prior studies (Wagner et al.180

(2007); Gruhier et al. (2010)) that also reported that the scatterometer retrievals are less accurate181

than the radiometer retrievals over dry regions. This is due to the fact that over dry environments182

when the soil dries out completely, the scattering contributions from surface inhomogeneities im-183

pact the soil moisture retrievals more than the soil moisture content itself (Wagner et al. (2012)).184

The relative measurement error computations in Figure 1 confirm these previous findings.185

The relative measurement error of in-situ soil moisture datasets reported in Dirmeyer et al.186

(2016) showed a range of 0.1-0.3 for most measurement systems with larger errors for systems187

employing sensors just above the land surface. From Figure 1, it can be seen that the errors as-188

sociated with the satellite-based retrievals are generally larger, in the 0.4-0.6 range. The domain189

averaged relative measurement errors are 0.46, 0.44, 0.54, 0.47, and 0.42 for AMSR-E, ASCAT,190

SMOS, AMSR2 and SMAP, respectively. Across different sensors, SMAP based retrievals show191

better performance over different climatic zones and biomes, with relative measurement errors192

significantly reduced over areas with moderate vegetation. Some areas with notably low skill for193

SMAP are the Sahara and Western Australia deserts, which are likely due to factors such as the194

surface temperature biases used in the SMAP retrievals (SMAP science team, pers. comm.) and195

the deeper contributing depth of the microwave signal over arid areas. In addition, the limited196

dynamic range of soil moisture over deserts and forested areas also contributes to higher relative197

errors over these areas. Generally, the soil moisture dynamic ranges are higher over non-forested198

areas with moderate vegetation and SMAP retrievals show high skills over such regions. Note that199
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Figure 1: Relative measurement error (ε) for soil moisture retrievals from AMSR-E, ASCAT, SMOS, AMSR2 and

SMAP. The lower right figure shows the distribution of ε for each sensor.
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such issues are also observed in retrievals from ASCAT, SMOS and AMSR-E. The comparison200

of the distribution of measurement errors also confirms the fact that overall, SMAP retrievals are201

improved relative to the skill of the retrievals from other MW sensors. The ASCAT retrievals show202

reduced error levels in the high latitudes, which contribute to the increased span in the medium203

error range (0.2-0.4) in the distribution comparisons.204
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Figure 2: Similar to Figure 1, but for metric entropy (H)

Figures 2 and 3 show comparisons of the soil moisture retrievals from the 5 sensors based on205
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Figure 3: Similar to 2, but for fluctuation complexity (C)
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metric entropy and fluctuation complexity, respectively. The maps of metric entropy show discrim-206

ination of areas with different levels of randomness in the retrievals. For example, areas of high207

vegetation density show up as areas with high randomness in the retrievals, as larger H values are208

seen over the Amazon, Eastern U.S. and Congo. Larger uncertainty is also seen over arid regions in209

the Western U.S., Sahara and Western Australia, especially in the ASCAT and AMSR2 retrievals.210

Conversely, the fluctuation complexity maps show reduced values over these regions with larger211

randomness, which are indicative of low information content in the time series at these locations.212

Similar to the trends seen in Figure 1, SMAP shows a distinctly different behavior in these com-213

parisons. Generally, the metric entropy values are significantly lower (reduced randomness in the214

SMAP time series) and fluctuation complexity values are higher (larger information content com-215

pared to a periodic or random noise signal). SMAP retrievals particularly show high information216

content (less noise) in the midlatitude regions in the comparisons in Figures 2 and 3. The plots of217

the distribution of the metric entropy and fluctuation complexity values across the whole domain218

also confirm these trends. The metric entropy and fluctuation complexity distributions for all sen-219

sors except SMAP are skewed to the high and low values, respectively, indicating that overall, the220

information content of the retrievals from these sensors have large amount of noise. The SMAP221

distribution spans an intermediate range, suggesting reduced levels of randomness and increased222

levels of complexity in the time series.223

Note that the AMSR-E and AMSR2 retrieval algorithms are based on X-band passive mi-224

crowave observations, whereas ASCAT uses C-band radar observations. The observations based225

on these channels have lower sensitivity to soil moisture and are more influenced by the presence of226
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moderate to dense vegetation compared to the retrievals using lower frequency (L-band) channels.227

Nevertheless, the comparison of ASCAT versus SMOS/AMSR-E/AMSR2 presented in Figures 1228

to 3 indicates that in many parts of the world, the active and passive retrievals have comparable229

skills. It is interesting, however, that the SMAP retrievals show higher skill and increased infor-230

mation content compared to SMOS, though both are L-band based retrievals. Though the SMOS231

and SMAP instruments are similar, they use different technologies. The SMAP instrument is a real232

aperture radiometer whereas SMOS uses a synthetic aperture radiometer. Previous studies (Oliva233

et al. (2013)) have documented that the unique SMOS brightness temperature (Tb) observations234

have a higher Noise Equivalent Delta Temperature (NEDT), which represents the temperature dif-235

ference that would produce a signal equivalent to the internal noise of the instrument. The SMOS236

retrieval algorithm attempts to reduce the impact of NEDT by using Tb from all incidence angles.237

The error in the soil moisture retrieval is then minimized by the relationship between Tb and the238

incidence angles. The quality and the number of Tb samples, however, reduce as the distance from239

the center of the swath decreases. SMAP, on the other hand, provides observations of a particular240

location at a fixed incidence angle, which likely contributes to the reduced noise in the measure-241

ments, as confirmed in our analysis. Note also that though SMOS and SMAP both operate L-band242

radiometers, the SMOS retrievals suffer more from the man-made radio frequency interference243

(RFI) contamination, which were unknown before the SMOS launch. The SMAP mission, on the244

other hand, developed measures to mitigate the effect of RFI prior to launch, which has likely245

contributed to the improved performance of the SMAP retrievals relative to SMOS.246

A comparison of the average values of the three metrics stratified by vegetation type is shown in247
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Figure 4: Stratification of metrics by vegetation type
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Figure 4. The seven vegetation categories are derived from the modified International Geosphere-248

Biosphere Programme (IGBP) Moderate Resolution Imaging Spectroradiometer (MODIS) data249

(Friedl et al. (2010)). Similar to the patterns seen in the spatial maps, smaller errors are seen for250

moderate vegetation types and larger errors for bare ground and thick vegetation types. SMAP251

shows the smallest errors among different sensors across most vegetation types. In particular,252

SMAP retrievals show lowest errors over the Cropland and Grassland types. In the information253

theory comparisons, SMAP retrievals show reduced levels of randomness and high fluctuation254

complexity among the 5 sensors across all vegetation types. Generally, the stratification also in-255

dicates higher information content over moderate vegetation types compared to thick vegetation256

types. For other sensors, however, the obvious contrasts in the metrics between vegetation types257

are not always observed. For example, AMSR2 shows similar metric entropy values across all258

vegetation types. The performance of SMOS and ASCAT are comparable for different vegetation259

types, except for the low metric entropy values over bare ground areas.260

Metric entropy is a measure of the amount of uncertainty inherent in a Markov process (Gray261

(2011)), but it does not characterize the state changes in a time series, which can be captured by262

complexity measures. As a result, joint consideration of the two measures is necessary to quan-263

tify the information content of a time series in terms of its randomness and state changes within264

the sequences. Previous studies have shown that the functional relationship between entropy and265

complexity generally follows an inverse parabolic relationship (Lange (1999)), as complexity is266

low for periodic (low entropy) and random noise (high entropy) signals, but high for time se-267

ries that are different from random or trivial sequences (intermediate entropy). Figure 5 shows268
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Figure 5: Density of grid points mapped as a function of metric entropy (x-axis) and fluctuation complexity (y-axis).
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“heatmaps”/density of grid points as a function of these two variables, for the 5 remote sensing269

retrievals. In addition, Figure 5 also includes joint evaluations of the entropy and complexity from270

ground soil moisture measurements and outputs from two land surface model simulations. The271

ground soil moisture measurements are obtained from the U.S. Department of Agriculture Soil272

Climate Analysis Network (SCAN; Schaefer et al. (2007)), whereas the Noah (Ek et al. (2003))273

and Mosaic (Koster and Suarez (1996)) model soil moisture estimates from the Global Land Data274

Assimilation System (GLDAS; Rodell et al. (2004)) are used as the land surface model outputs.275

The comparisons shown in Figure 5 indicate the different regions of the Entropy-Complexity276

(E-C) space spanned by each soil moisture dataset. The remote sensing measurements AMSR-E,277

ASCAT, SMOS and AMSR2 show high density of grid points in the lower right part of the E-C278

space, the area dominated by high randomness and low complexity. This suggests that the informa-279

tion content of these retrievals is low. Comparatively, SMAP shows improved performance, where280

the density of grid points is shifted to the area with high complexity and intermediate random-281

ness. The in-situ measurements from SCAN show high density in the E-C space in regions with282

high complexity, but with marginally reduced entropy (compared to SMAP). The heatmaps from283

GLDAS-Noah and GLDAS-Mosaic also indicate high complexity and intermediate randomness284

in their soil moisture time series. It can be observed that the land models, ground measurements285

and remote sensing datasets span different parts of the E-C space and together, they encompass286

the inverse parabolic relationship between entropy and complexity. Generally, entropy is lower in287

the land model estimates, increases marginally for the ground soil moisture measurements, and288

is highest for remote sensing datasets. On the other hand, complexity is comparable across land289
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surface model and ground soil moisture estimates, but significantly lower for remote sensing mea-290

surements (except those from SMAP). If ground measurements are considered as reference, the291

comparison in Figure 5 shows that significant improvements to the remote sensing retrievals are292

required for improving their information content, to improve their utility in modeling and data293

assimilation environments.294

As the metric entropy and fluctuation complexity measures quantify the information of the295

signal and are not necessarily direct assessments of the skill of the measurement itself, they should296

be viewed as a complementary analysis to standard validation metrics. For example, in an arid297

region, the soil moisture signal may not have significant variability and as a result, the complexity298

and entropy of the natural signal may be low. Arguably, the utility of remote sensing measurements299

is higher over areas where soil moisture dynamics are inherently more variable and capturing them300

accurately is difficult. Over such areas, the information theory metrics are useful for providing both301

assessments of signal quality as well as for intercomparing model, satellite and ground reference302

data products. The information theory based discrimination can also be used for developing merged303

products with improved information content.304

4. Summary305

Remote sensing based observations of soil moisture, primarily from passive and active mi-306

crowave remote sensing, are of great value as they provide measurements across a range of spatial307

and temporal scales and extents. A consistent evaluation of the accuracy and information con-308

tent of these products, however, is difficult since reliable, spatially coherent ground measurements309

of soil moisture are lacking in many parts of the world. In this article, we present a time series310
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based information theoretic analysis for an intercomparison of recent satellite-based soil moisture311

products.312

Soil moisture retrievals from five recent microwave remote sensing instruments, including313

AMSR-E, ASCAT, SMOS, AMSR2 and SMAP are used in this study. Three measures that quantify314

the accuracy, randomness, and the complexity of the data are used to intercompare these retrieval315

products. An autoregressive analysis that models soil moisture as a first order Markov process is316

used to develop estimates of measurement errors. Information theory measures of metric entropy317

and fluctuation complexity that quantify the stochasticity in time series data are used to provide318

comparisons of information content in these retrievals. Metric entropy measures the amount of319

randomness inherent in a Markov process whereas fluctuation complexity provides a measure that320

evaluates the level of regularity and randomness in the time series data.321

The information theory measures are developed by translating the soil moisture time series to322

binary symbol strings and by examining the probabilities of patterns of states defined by a sequence323

of consecutive symbols. The article uses three symbol states, consistent with previous literature324

and similar applications of the information theory measures for hydrological model evaluations.325

The results of the red noise spectrum analysis provide an assessment of the strengths and limi-326

tations of the soil moisture retrieval products. Generally these products have reduced measurement327

errors over areas with moderate vegetation density and large errors over areas with thick vegeta-328

tion. In many instances, large measurement errors are also observed over bare soil areas. The329

estimates of measurement error also indicate that generally remote sensing retrievals have larger330

errors compared to that of in-situ measurements. Among the remote sensing retrieval datasets, the331
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SMAP-based products were found to have lower errors over different climatic regimes in the world.332

In particular, the SMAP retrieval errors were comparable to that of the in-situ measurements over333

areas with moderate vegetation density (relative errors in the range of 0.2-0.3).334

Comparison of the metric entropy and fluctuation complexity measures from these retrieval335

products also indicates similar trends. The signature of vegetation density is prominent in these336

information theory evaluations as the evaluations indicate larger uncertainty and lower complexity337

over areas of the world with thick vegetation. Comparatively, the SMAP retrievals show improved338

information content relative to other retrievals. The level of randomness was generally lower in339

the SMAP retrievals, whereas the complexity of the SMAP time series data was generally higher,340

compared to the AMSR-E, ASCAT, SMOS and AMSR2 products. SMAP soil moisture product341

is based on L-band passive microwave observations (which are most sensitive to soil moisture).342

Other satellites use different frequencies, which are less sensitive to soil moisture (AMSR-E and343

AMSR2 use X-band radiometers, ASCAT uses a C-band radar). SMOS L-band observations are344

affected by the presence of RFI.345

A joint comparison of the metric entropy and fluctuation complexity of the remote sensing re-346

trieval products is also presented in this study. Generally, it can be argued that a time series signal347

is of high information content, if it possesses intermediate entropy and high complexity. Combi-348

nations of high entropy and low complexity are symptomatic of random noise signals whereas low349

entropy and low complexity are indicative of periodic/trivial signals. The simultaneous assessment350

of entropy and complexity indicates that the majority of retrievals from AMSR-E, ASCAT, SMOS351

and AMSR2 have low information content. Comparatively, the performance of the SMAP re-352
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trievals is better, with higher density of grid points with increased complexity and reduced entropy.353

A similar evaluation of in-situ soil moisture and land surface model output data is also presented354

in the article. The in-situ measurements encapsulate the region of high information content in the355

entropy-complexity space. The land surface models also indicate marginally lower randomness356

with high levels of complexity in their estimates. Together, the three sets of soil moisture estimates357

(remote sensing, in-situ and model) span the majority of the inverse parabolic space expected in the358

entropy complexity comparisons. Generally, the land surface model and remote sensing datasets359

span mutually exclusive regions of the E-C space. This suggests that improvements in the re-360

mote sensing retrievals are necessary before including them in data assimilation environments that361

rely on observational information to constrain model simulations and forecasts. The results also362

indicate that SMAP retrievals with low entropy and increased complexity can provide valuable363

information for hydrologic modeling studies.364
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